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Abstract

A back-propagation artificial neural net has been trained to estimate logP values of a large range of organic
molecules from theesults of AM1 and PM3 semiempirical MO calctitans. Theinput descriptors include
molecular properties such as elestatic potentials, total dipole moments, mean polarizabilities, surfaces, vol-
umes and charges derived from semiempirical calculated gas phase gsoriietse properties can be related

to the molecule’s solubility in hydrophilic or lipophilic media. The input descriptors were selected with the help
of a multiple linear regression apsis. The esulting net estimates the logP values of 105 organic compounds
with a standard deviation of 0.53 units from the experimental logP values for AM1 and 0.67 units in the case of
PM3.
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In this respect the n-octanol/water partition coefficient is an
Introduction important parameter that is a measure of the extent to which

a solute is distributed between water and a water-immisicible
It is now possible to derive accurate molecular propertiediquid phase. The n-octanol/water partition coefficient is the
with semiempirical molecular orbital theory. Especially elec-ratio of a chemical’s concentration in n-octanol to that in
trostatic properties such as dipole moments, polarizabilitiegvater in a two phase system at equilibrium. Since measured
and electrostatic potentials are important and can often bealues of the partition coefficient range from less thafité0
related to experimental behaviour [1]. On the other handlarger than 19 (at least 12 orders of magnitude), the loga-
there is strong interest in the theoretical prediction of physifithm, logP, is commonly used to characterise its value. LogP
cally measurable properties for the development of negsdr  is used extensively to describe a compound’s lipophilic or
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hydrophobic properties and is therefore a valuable paramvalues of a set of small molecules very accurately and calcu-
eter in many QSAR studies that have been developed fdate the fragmental values from these data. Using the con-
pharmaceutical, environmental, biochemical and toxicologi-cept of isolating carbons (parbon atoms with at least two
cal sciences [2]. Many studies have shown that logP is usefllonds linked to other carbon atoms), they derived their own
for correlating a drug molecule’s transport properties or itsset of terminal frgments. Tis system also includes many
interactions with receptor molecules, and changes in its stru@correction factors (e. g. for multiple halogenation or differ-
ture with various biochemical or toxic effects [3]. Although ent doublebonds). Although essentially all logP values for
logP is generally easy to determine, the reliability of pre-the compounds included in the base set are well reproduced,
dicted values is important during the design process. Untilt is often a problem to divide (fragment) a molecule cor-
now, mostly empirical methods have been developed. rectly, especially for complex drug molecules, or to use the
Among others [4], there are two widely used, essentiallymany correction factors. In order to overcome this situation,
empirical methods for the estimation of logP, Rekker’s f con-new fragment methods (atomic fragments) were developed
stant method [5&4nd Leo and Hansch's fragment approach[7] but even so, not all problems of these methods could be
[6]. Rekker first defined an arbitrary set of terminal frag- solved.
ments using a database of about 1000 compounds with known Recently, methods have been proposed that utilise prop-
logP. Linear regression analysis was performed with the nunerties of the entire solute molecule, e. g. molecular surface
bers of the different substructures as the independent vararea, volume, charge density or electrostatic potential, to pre-
able and logP as the dependent variable. The regression adict logP[8]. These methods attempt to overcome various
efficients obtained are used as group coutidins. Toesti- inefficiencies of the fragment constant approach, e. g. the
mate the partition coefficient of a compound, one simply sumsieed for correction factors or the inability to estimate logP
up the group contributions and the appropriate correctiorior unknown fragments. For example, Herges et al. have used
factors. Leo and Hansch'’s philosophy was to determine logR combination of semiempirical self-consistent reaction field
calculations (SCRF) and a neural netwfgk There have
also been attempts to calculate logP directly from the solva-

Table 1.Calculated properties for the 194 compounds in thelion energies. For instance, Reynolds et al. [10] have used

data set. free-energy perturbation calculations for a series of acyclic
Property Symbol Reference
total dipole moment p 17
mean polarizability POL 17
molecular surface SUR 17,18
molecular volume VOL 17,18
globularity GLOB 17,19
sum of the electrostatic potential (ESP) derived atomic charges
on the nitrogen atoms NSUM 17,20
on the oxygen atoms OSUM 17,20
Parameters introduced by Politzer et al.:
highest electrostatic potential ESP 17,21,22
lowest electrostatic potential ESP 18,21,22
number of surface points with positive ESP pos" 17,23
number of surface points with negative ESP neg 17,23
mean value of positive ESP MEAN 17,21,22
mean value of negative ESP MEAN 18,21,22
positive variance 0?2 24
negative variance o2 24
total variance 02, 24
balance parameter v 24

histogram including the number of surface points within a
specified range of the ESP (8-point) h1-h8 17,21,22,23




144 J. Mol. Model.1997,3

alcohols and find agreement with experimental logP values h7 ESP between 60 and 100 kcal thol

of £0.45 units. Cramer, Truhlar et al. [11] and Klamt [12] h8 ESP more positive than 100 kcal rhol

have used differences in semiempirical calculated SCRF sol-

vation energies. In our approach to estimating logP, semiem- This approach was used in order to obtain a more de-
pirical MO-methods are used to calculate a set of moleculatailed description of the calculated electrostatic potential at
and atomic mperties from gas phase geometries in order tahe surface.

use them as descriptors for a back-profiaganeural net- Another data set, also derived from the electrostatic po-
work. Our approach is intended to estimate logP from a sintential, includes the properties introduced by Politzer et al.
gle, fast gas phase calculation and should therefore be mof24] in their work on the interactions of solute and solvent.
appropriate for rapid scans of large numbers of molecules. Ifihe positive ¢2) and negatived?) variance are calculated
an initial test, 194 different organic compounds were used aom the positive { *(r ;)) and negative\ ~(r j)) values of
data set in order to test the reliability of the method. Thethe electrostatic potenti®gl(r) on the molecular surface and
results obtained were then taken as starting point for the quatheir averages:
titative-structure property relationship (QSPR) on a data set

containing 1085 compounds. It includes a wide spectrum of "

organic compounds, such as nitrogen-, oxygen-, sulfur- an%i _1 Z[V+(r.)_\7+]2
phosphorus-containing molecules, alcohols, ethers, halogen- m & ' s
ated compounds, amino acids and various aromatic or

heteroaromatic molecules.

(1)

o =%j[v-(rj)_v;]2 o

Computational details =1

All organic compounds and their experimental logP values In other wordsp? describes the standard deviation over
were taken from a database of the Wellcome Research Labthe positive molecular electrostatic potential (MEP) regions
ratories, Beckenham,dft. The progranCONCORD[13] of the molecule’s surface wreaso? describes the negative
was used to convert the 2D- into 3D-struetur The geo- counterpart.

metries were then checked and, if necessary, modified with The total variance was then calculated as the suaf of
the help of the molecular modelling program package SYBYland ¢2

[14]. The structures were optimised using AM1[15] and PM3
[16] included in the semiempirical program VAMP 6.0 [17].
In the case of the small data set, only AM1 was used. Amind ot
acids were calculated in their zwitterionic forms. For the ini-

tial approach, a set of molecular properties was calculated The total variancegg, , is @ measure of the spread of the
using a slightly modiéd \AMP version. In this version, surface potential and is particularly sensitive to variations in
descriptors developed by Politzer et al. [24] are derived froniS Magnitude, emphasising positive and negative extremes.
molecular electrostatic surfaces. In total the 27 MEP-derivedt has been interpreted to be indicative of a molecule’s ten-
descriptors shown in Table 1 were generated for the smaflency for electrostatic interactions [24]. Finally, the so called

=02+0? (3)

data set. balance parameteris derived using equation (4):
The globularity (GLOB) [19]s often referred to as the
deviation from spherity. It is calculated as the ratio of the 6202
surface area of a sphere of volume equal to the calculateg = —* >
molecular volume and the surface area of the molecule. If [ofm] (4)

the molecule is perfectly spherical, the gltasity is one.

The histogram consists of 8 values. These are the number of

surface points (generated with a modified ,Marsili“ algo- V represents the manner in whigfy, affects interactive ten-
rithm [23]) having a ESP within a defined range. The rangegenCieS more aCCUrately. It attains its maximum value when

were defined as follows: 02 and o2 are equal. This means that the molecule interacts
to a similar extent (whether strongly oeakly) through both

hl ESP more negative than 100 kcal ]3{]0| its pOSitive and negative rm\s. ThedeSCI’iptOI’ set was ex-
h2  ESP between -100 and -60 kcal thol tended for the large datet. The aditional MEP-derived
h3  ESP between -60 and -20 kcal rhol parameters are listed in Tal®.
h4  ESP between -20 and 0 kcal rhol These additional parameters were used in order to obtain
h5  ESP between 0 and 20 kcal thol a more detailed description of the charge distribution within
h6 ESP between 20 and 60 kcal thol the molecules. Overall 36 descriptors were created for the

large data set.
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Table 2. Additional properties calculated for the 1085
compounds in the large data set

Property Symbol Reference

sum of the electrostatic potential (ESP) derived atomic charges

on the sulfur atoms SSUM 17,20

on the phosphorous atoms PSUM 17,20

on the fluorine atoms FSUM 17,20

on the chlorine atoms CLSUM 17,20

on the bromine atoms BrsUM 17,20

on the iodine atoms ISUM 17,20

sum of the electrostatic potential (ESP) derived atomic charges

of all halides HalSUM 17,20

histogram including the number of surface points within a

specified range of the ESP (12-point) h1l-h12 17,21,22,23
Results The t-values of the coefficients are shown in Table 3 and

the regression plot is shown in Figure 1.

The discussion of the results is divided into two sections. The linear regression coefficient r is 0.936, the square r
The first describes the results obtained for the small data sét876 and the cross validatiog 0.872. The standard devia-

using multiple linear regression analyses [25] and a backtion is 0.532.

propagation neural network [26]. The second part describes

similar results for the large data set. Discussion

The predictive power of our approach is promising, although
Small data set the mathematical relationship of the different variables is quite
simple. The descriptors found in equation (5) were therefore
used as starting point for the back-propagation nenatl

Multiple linear regression analyses
work.
Generally, use of multiple linear regression analyses is a very
fast method in order to identify the calculated properties that
are important for the prediction of experimental quantities.
These properties should be useful as descriptors for a neurﬁ'-,\‘,ll
net. All investigations were performed using the QSAR pro-
gram TSAR[27]. Thebest results were obtained for the in-

ble 3 t-values of regression equation (5).

put parameters EQR, ESR;,, MEAN,, MEAN,, D, POL, Input parameter Coefficient t-value

SUR, VOL, GLOB, NSUM, OSUM, p, 1.4 0%, 0% 0%,

and and their squares. The linear regression coefficierts r, r ESpP 0011 2 755

and the t-values (ratio of the input parameter’s regression min ' '

coefficient and the mean er) were used to select the best  SUR 0.036 15.640

regression performance. Thellbwing significant 10 term D, 0.203 7.645

equation (5) results from the regression analysis: NSUM 0.824 6.441

2

logP = (0.011 £ 0.001) ESP + (0.036 + 0.005) SUR - NSUM 0.193 2.340

(0.203 + 0.023) D+ (0.824 * 0.209) NSUM + (0.193 + OSUM 1.126 8.211

0.190) NSUM + (1.126 + 0.219) OSUM + (0.120 + 0.075) OSUM? 0.120 2.717

OSUM — (2.6- 10 + 6.4-1¢F) g — (5.1-10 + 1.6-10") npOSZ 2.6-107 4.779

2 2 _

Neg— (0.001 + 0.0006p2 — (1.279 + 0.506) nneg2 5.1.107 6.583
®) 02 1.279 2.460

r=0.936 r>=0.876
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Figure 1 Best predictions of the logP values by multiple

linear regression analysis.

AN logP Training Set

J. Mol. Model.1997,3
Neural network

We recently introduced a technigue to estim&echemical
shifts using a combination of semiempirical calculations and
a back-propagation netwofR8]. The concept of a super-
vised learning algorithm (implemented in back-propagation
netwoks) is well suited as a nonlinear device for linking
semiempirically calculated parameters with experimental
quantities. Generallyneural networks are able to perform
highly nonlinear pattern recognition, classification and re-
gression tasks, the results of which are often superior to tra-
ditional approaches. Recent applications of neural networks
include the determination of structure-activity relationships
in drug design (QSAR) [29-31], the prediction of protein struc-
ture [32] and the classification of specf88]. Thermody-
namic data such as solubilities [24]d boiling points of or-
ganic heterocycles [3Bjve also been the subject of investi-
gation. Thenetwork simulation program ANsim [36] was used
in this work.

Results of the back-propagation net

The small training set contained mainly aliphatic- and cyclic
hydrocarbons, aromatic- and heteroaromatic compounds con-
taining oxygen-, phosphorus- and nitrogemes.The number
of descriptors was varied within a range of 8 to 13 param-
eters. The parameters of equation (5) were taken as starting
point. Table 4 showthe best descriptor set, which was ob-
tained by trial-and-error variation of the descriptor set start-
ing with those that appear in edgoa (5). The correkion
obtained is illustrated in Figure 2.

The correlation coefficient r obtained is 0.962, the square
r 2is 0.925 with a standard deviation of 0.393.The cross vali-

Table 4. Descriptor set for the 12:4:1 blkgropagdion
network.

Number Descriptor

B
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Figure 2.Best predictions obtained for the logP training set

using a 12:4:1 neural net.

total dipole moment D
mean polarizability POL
molecular surface SUR
molecular wlume VOL
NSUM

OSUM
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calculated logP

Figure 3. Best predictions obtained for the small logP test
set using a 12:4:1 neural net.

predicted bogP

Figure 4. Best predictions of the logP values by a multiple
linear regression analysis (579 compounds).

Table 5 t-values of regression equation (6).

AN logP Test Set

147

Input parameter Coefficient t-value

B
POL 0.063 9.140
MEAN, 0.058 5.243

4 h6 0.0009 7.142
ESP... 0.031 9.192
GLOB 1.296 2.680

z NSUM 0.437 11.660
OSUM 0.815 13.664

i PSUM 0.704 3.810
SSUM 0.437 7.899
CISUM 2.286 7.142

) BrSUM 5.883 5.727
ISUM 1.874 2.969

-4 I I I I

4 -2 0 2 4 B dation , is 0.930. A small test setpnsisting of 18 mol-
experimental logP ecules, was selected in order to test the trained network. The

AMI1 logF Linear Regression Flot

Large data set

-4 -2 a 2 4 B g 10
exp evimental logP

parameters ESP,, ES

min?

r=0.866 r>=0.750

Multiple linear regression analyses

correlation obtained can be seen in Figure 3.

The correlation coefficient r is 0.986,is 0.972 with a
standard deviation of 0.339. Thg walue is 0.958. The re-
sults of this initial investigations were thus very promising.
We therefore used a set of 1085 organic compounds in order
to refine our approach.

With the experience of the initial approach, an enlarged data
set with 579 organic compounds was selected covering an
experimental logP range from -4 to 8. Parameters shown in
Tables 1 and 2 were used for the multiple linear regression
analysis. Agin, the best results were obtained for the input

Dy Nyos Npeg MEAN ,, MEAN,,
POL, SUR, VOL, GLOB@?, @2 02,, v, NSUM, OSUM.
Surprisingly, no square values were found. Moreover, all pa-
rameters with halogen charges were included. The following
equation (6) results from the best linear regression:

logP = 0.063 POL — 0.058 MEAN- 0.0009 h6 + 0.031
ESP,. — 1.296 GLOB + 0.437 NSUM + 0.815 OSUM +
0.704 PSUM + 0.437 SSUM + 2.286 CISUM + 5.883
BrSUM — 1.874 ISUM + 3.713

(6)

The t-values are shown in Table 5. Figure 4 shows the
regression results graphically.
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The correlation coefficient r is 0.866, is 0.750 with a  eters. A direct correlation of the parameters VOL and SUR
standard deviation of 0.799.Thg value is 0.806. Again the could be observed, suggesting that one parameter is suffi-
linear regression is fairly accurate. In order to analyse theient for the back-propagation net.
descriptor set in more detail, a principal component analysis
was carried out. Back-propagation networks

Analysis of the principal components A training set of 980 organic compounds was selected ran-
domly from the total set of 1085. 105 compounds were cho-
A principal components analysis was performed within TSARsen for the test set. The number of descriptors for the input
[27] in order to assess the major contributors to the total varitayer was varied between 16 and 25 and the number of nodes
ance of the descriptor set. Overall, 16 parameters were usedthe three layer back-propagation network between 300 and
and 12 principal components were obtained that accountesl00. Thenetworks were trained until the RMS error fall be-
for 100 % of the total variance. It is sufficient to concentrateow 4% of the logP range. The danger of overtraining the
on the three most important principal components, whichnheural net was checked with the standard deviation of the
contribute 28 %, 22 % and 10 % to the total variance, respetest set. Thdest performance was obtained with an input
tively. The parameters and components are shown in Table Byer of 16 parameters and a total net connectivity of 451
Principal component 1 has the largest influence on th@odes (16-25-1 net). Two networks were trained for AM1
regression’s variance. The properties with the largest contriand PM3 data sets, respectively. The final descriptor set is
butions have the largest impact on the prediction of the logRhown in Table 7.
value. These are DMEAN,, MEAN_, o2, v, ESP ., Although the descriptors SUR and VOL are highly corre-
ESP .,OSUM and SSUM. The second component adds POLated, it is surprising that the networks’ performances de-
VOL, SUR, GLOB and NSUM. In the third component no pend on both parameters. The results obtained for the final
further properties appear. The properties PSUM andetwork are illustrated in Figure 5.
HALSUM do not play any role in the first three principal The correlation coefficient r for the training set is 0.965,
components, but are clearly important for specific compounds? is 0.931 with a standard deviation of 0.41. Thevalue is
The correlation matrix as a supplemental tool was analyse@d.930. In the case of PM3 the performance is slightly worse
in order to detect correlations between the different paramé = 0.940, # = 0.883, [, = 0.905 and the standard deviation

Table 6. Principal components analysis. Table 7. Descriptor set for the neural networks.
Variable property pc 1 pc 2 pc 3 Number Descriptor
X, D, 0.353 1 total dipole moment D
X, POL 0.504 2 mean polarizability POL
Xg MEAN, 0.397 -0.175 0.151 3 molecular surface SUR
X, MEAN_ -0.389 0.104 0.160 4 molecular wlume VOL
Xg 02, 0.403 -0.244 5 globularity GLOB
Xg v 0.186 -0.119 0.490 6 NSUM
X5 ESP.., -0.239  -0.149 0.548 7 OSUM
Xg ESP. .« 0.422 0.170 8 PSUM
Xq VOL 0.506 0.106 9 SSUM
X10 SUR 0.519 0.115 10 HalSUM
Xy GLOB -0.251 11 ESP..
Xqo NSUM -0.207 0.355 12 ESR.,
X, OSUM -0.244  -0.174  -0.369 13 MEAN,
X4 PSUM 14 MEAN_
X5 SSUM 0.233 0.132 15 0%,
X HALSUM 16 Y

pc = principal component
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AN logP Training Set

calculated logP
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experimental logP

Figure 5. AM1 training set.

is 0.45). Atest set containing 105 organic molecules \
used in order to investigate the predictive power of the
work. The result is shown in Figure 6.

A correlation coefficient r of 0.9502 of 0.902, the cros:
validation r,, of 0.915 with a standard deviation of 0.53 w
obtained (maximum error 1.19). For the range of org:
molecules within this data set, the predictions are very a
rate. In the case of PM3, the performance of the netwo
slightly worse. The result is shown in Figure 7.

A correlation coefficient r of 0.910 2rof 0.830, the cros:
validation r, of 0.837 with a standard deviation of 0.67 (me
mum error: 2.15) was obtained. Although the training |
formance is rather similar for the two semiempirical me
ods, it is surprising that there are such large deviations i
prediction for certain molecules in the case of PM3. In o
to compare the efficiency of the two networks, all predic
logP values of the test set are given in Table 8.

While the perfomance ofAM1 is quite accurate, thel
are some large deviations in the case of PM3. During a
ther investigation of test molecules not included in the ol
nal test set, a systematic weakness of our present net
was detected. LogP for compounds with large alkyl chait
estimated poorly. Some examples with a large calculate
ror are given in Scheme 1.

149

AM1 logP T est Set

calculated logP

experimental logP

Figure 6. AM1 test set.

PM3 logF Test Set

calculated logP

experimental logP

Figure 7. PM3 test set.
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Table 8. Table of test molecules with calcidd AM1/PM3

logP values.
Compound exp. AM1 PM3
1 N,N-Bis(2,3-dihydroxypropyl)-3-N-methyl-acetamido-

2,4,6-triiodo-m-phthalamide -2.06 -1.82 -2.13

2; Citric acid -1.72 -2.00 -1.12
3 Phenylalanine -1.52 -1.42 -1.29
4; 1,3-Propanediol -1.04 -0.43 -0.30
5: Maleic acid-hydrazide -0.84 -1.34 -1.09
6: N-Formyl-cyclobutane-carboxamide -0.70 -0.10 0.00
7 Nitrofurantoin -0.47 -1.20 -0.83
8: 2,2-Dimettylpropionic acid-hydrazide -0.35 -0.53 0.01
9 3-Fluoropropanol -0.28 -0.10 0.05
10 2',3'-Didesoxyadenosine -0.22 0.24 0.80
11:  3-Mesylphenyl-urea -0.12 0.16 -0.31
12 o-Methyl-THPO -0.04 0.42 0.43
13.  5,6-Dihydro-2-methyl-1,4-oxathiin-3-carboxylic acid 0.04 0.86 0.71
14:  Mercapto-acetic acid 0.09 -0.68 -0.67
15 Merbarone 0.14 0.72 1.26
16. o-Methylbenzoyl-hydrazine 0.22 0.65 0.65
17.  Nikethamide 0.33 0.98 0.90
18 2,2-Dichloroethanol 0.37 0.73 0.92
19 1-Acetyl-N-(4-fluorophenyl)-hydrazine-carboxamide 0.42 1.19 1.31
20:  Piperazine-2-carboxanilide 0.48 1.07 1.55
21:  2-Nitro-p-phenylenediamine 0.53 -0.46 0.62
222 2-Amino-5-methoxy-benzimidazole 0.57 0.95 1.52
23.  Glutaric acid-dimethylester 0.62 0.53 0.91
24 3-(5-Nitro-2-furanyl)-2-propenoicamide 0.65 -0.08 1.59
25.  1-Acethyl-6-dimethyl-7-methoxymitosene 0.72 0.37 0.07
26.  2-Azacycloheptanthione 0.75 0.85 0.75
27.  N-(2-Benzoyloxyacetyl)-2-carboxyazetidine 0.79 0.58 1.08
28 Chloropentazide 0.84 1.08 0.88
29.  4-Pyridine-butaneamine 0.86 0.87 1.22
30:  2-lodo-benzamide 0.93 1.51 1.33
31 4-Methylthiazole 0.97 0.55 0.90
32 6-Cyanoquinoxaline 1.01 1.38 0.47
33.  1-Phenyl-3-cyanoguanidine 1.05 1.37 2.50
34: m-Acetylamino-acetophenone 1.10 1.21 1.02
35.  Acetylsalicylic acid 1.19 2.14 1.50
36.  2-Nitrobenzyl-alcohol 1.24 2.43 2.47
37. Benzaldehyde-semicarbazone 1.27 0.65 0.97
38.  4-Oxo-4-phenyl-butanoic acid 1.30 1.64 1.73
39.  2-Phenyl-ethanol 1.36 2.25 1.95
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40:  3-Bromo-benzenesulfonamide 1.39 1.04 0.74
41:  Bromochloromethane 1.41 1.05 1.33
42:  2-Imino-3-methyl-5-(5-nitro-2-furfurilidine)-thiazoline-4-one 1.44 0.62 1.16
43 Trimethylacetic acid 1.47 0.54 0.69
44:  o-Fluorophenylacetic acid 1.50 0.78 0.49
45.  2-(2,6-Dichloro-4-hydroxy-phenylimino)-imidazolidine 1.52 1.06 1.44
46:  N-Phenyl-4-aminophenylsufonamide 1.55 1.32 2.63
47.  N,N-Dimethylcarbamate-p-(n,n-dimethylcarbamate)-benzylester 1.59 2.34 1.90
48 2-Methylquinoxaline 1.61 1.28 1.65
49:  3,5-Dimethoxyphenol 1.64 1.32 1.44
50: Indole-3-ethanolcarbamate 1.69 1.67 2.34
51:  3-Indolylpropionic acid 1.75 2.03 2.34
52 Propylene 1.77 1.72 1.80
53.  2-Oxoisopropyl-5-phenyl-5'-ethylbarbituric acid 1.79 1.08 1.55
54;  4-Dimethylamino-thieno(2,3-D)-pyrimidine 1.82 1.68 1.00
55.  2-Acetyl-oxyethyl-benzoic acid-ester 1.85 2.87 2.45
56.  2-nitro-5-fluorophenol 1.91 0.90 0.51
57.  N-Methyl-2,3-dimethylphenyl-carbamate 1.95 1.98 1.76
58  o-Methylphenoxy-acetic acid 1.98 1.59 1.77
59:  Acetic acid-m-methoxybenzylester 2.02 2.04 2.09
60. 1,1'-Dioxo-3-cyclohexen-3-yl-1,2,4-benzothiadiazine 2.05 1.64 2.14
61: 3,4-Dimethylacetanilide 2.10 1.98 1.71
62 Indole 2.14 1.78 2.37
63:  1,2-Dinitro-4-chlorobenzene 2.18 3.15 3.00
64.  1-Hydroxyethyl-2-styryl-5-nitroimidazole 2.25 2.59 1.82
65.  o-Methyl-benzaldehyde 2.26 1.84 1.57
66. 2,6-Dimethoxypyridine 2.30 1.68 1.33
67.  Thiophene-2-carboxylic acid-ethylester 2.33 1.95 1.52
68. 21-Desoxybetamethasone 2.35 1.82 2.13
69:  Thiosalicylic acid 2.39 1.79 1.36
70.  1-Pyrrol-2-yl-pentanone 2.42 3.03 3.21
71.  5,5-Diphenyl-hydantoin 2.47 2.66 2.45
72.  8-Trifluoromethyl-quinoline 2.50 1.58 0.34
73.  2,17-dihydroxy-3-oxolactone-7,21-dicarboxy-pregan-4-ene 2.54 2.81 2.50
74:  N-Benzyl-N-formylaniline 2.62 3.11 3.29
75.  2-Ethyl-4,6-dinitrophenol 2.67 2.88 1.54
76. 5,6-Diazaphenanthrene 2.71 2.92 241
77.  1-Methyl-1,3-dihydro-5-(2-fluasphenyl)-7-tloro-1,4-

benzodiazepin-2-one 2.75 1.92 1.83
78.  3-Butyl-RS-1(3H)-isobenzofuranone 2.80 2.23 2.38
79.  2-Anilino-1,4-Naphthoquinone 2.84 3.02 2.78
80: 4-Aminobiphenyl 2.86 2.99 3.97
81:  Dihydromorphanthridine 2.90 3.21 3.42
82.  p-Phenoxy-aniline 2.93 2.64 3.74
83:  Octanoic acid 3.05 1.99 1.92
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84:  Deoxycorticosterone-acetate 3.08 2.67 3.51
85  3,4-Dichloronitrobenzene 3.12 2.51 2.98
86.  N-(3,4-Dichlorophenyl)-difluoroacetamide 3.18 3.46 3.39
87. lodobenzene 3.25 281 2.79
88.  1-(3,4-Dichlorophenyl)-2-isappylaminoethanol 3.32 2.65 3.23
89.  3-Methoxy-4-cyclohexyl-methoxy-phenylacetic acid 3.35 4.34 3.79
90: Anthraquinone 3.39 3.43 3.28
91:  Prometrin 3.51 3.43 2.33
92:  4,7-Dichloroquinoline 3.57 3.73 3.05
93 9-(N-((N,N’-Diethylamino)acetyl)amino)-fluorene 3.64 3.57 3.45
94:  Indigo 3.72 4.56 3.00
95.  3,4-Dimethylchlorobenzene 3.82 3.69 3.64
96. 1-(4-Cyclohexylphenyl)-3-methoxy-3-methylurea 4.08 3.76 3.30
97.  Propanoic acid-(1-phenyl-1-benzyl-2-methyl-3-(n,n-dimethylamino))-
propylester 4.18 3.90 413
98  2,6-Dimethylnaphthalene 431 4.24 4.27
99:  1,3-Dimethylnaphthalene 4.42 4.27 4.17
10G  Propanoic acid-1,3-dithiolan-2-ylidine-dibutylester 4.60 4.26 2.65
101 2,4,4'-Trichlorobiphenyl 5.62 6.09 5.97
102 2,4,5-Trichlorobiphenyl 5.90 5.81 5.74
103 1,3,7,8-Tetrachlorodibenzodioxin 6.30 6.24 6.03
104 1,2,3,6,7-Pentachlorodibenzodioxin 6.74 5.86 5.86
105 3,3',4,4',5,5'-Hexachlorobiphenyl 7.41 6.38 6.93
Dependence of the network’s predictive power on the
descriptors
)\@% The dependence of the predicted AM1 and PM3 logP values
\/O\/\O/\/OH | i was investigated by systematically changing the input
N\H/N descriptors. A compound with a small error (acetophenone)
S was selected for that purpose. With the exception of the pa-
rameters polarizability POLhalancev and charge OSUM
AM1: 1.56 1.68 (Table 2), only small effects on the predicted logP value re-
PM3: 1.08 2.07 sulting from the change dhe AM1/PM3 calculated input
. parameters were found. Changing the calculated value of the
exp.: -0.54 2.98 > .
parameters and POL has a dominant influence on the pre-
diction of logP. Figure 8a shows the dependence of the cal-
Q J\/ culated logP on the descriptor polarizability, POL.
S o A linear relationship between the logP values and the
[ change of the parameter is evident, with a larger slope for
S OY\ AML1. The effects for the parameter “Balance” are illustrated
o in Figure 8b.
AML: In this case the network’s reaction is nonlinear. Small
: 4.45 changes of the calculated value (AM1 and PM3) of the bal-
PM3: 2.84 ance cause a positive change in the predicted logP. It is inter-
exp.: 4.89 esting to note that the original valuevafepresents the mini-

Scheme 1Molecules with large errors.

mum of the curve.
Another sensitive parameter for the evaluation of logP is
the descriptor OSUM. The result is illustrated in Figure 8c.
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Figure 8a.Dependence of the AM1/PM3 predicted logP valueFigure 8b. Dependence of the AM1/PM3 predicted logP
of acetophenone on the polarizability. The “change ofvalues of molecule acetophenone on the balance. The “change
parameter” axis indicates that the numerical value of the of parameter” axis indicates that the numerical value of the
parameter was changed by the given amount. parameter was changed by the given amount.

While the predicted logP value fgarly constantvhen  ficients and standard deviations obtained are nearly as good
the PM3 charge is varied, the exff on theAM1 predicted as those obtained using ClogP [38] without having problems
logP is enormous. Increasing the charge strongly increasasith unknown fragments and without using any correction
the predicted logP, whereas in the reverse direction a limitfactors.The current method is more general than that of Herges
ing value of 1.70 is approached. et al. [9], because the descriptors are calculated within one

The different behaviour of the AM1 and PM3 nets for thegas phase geometry optimisation, whereas the technique of
descriptor OSUM is perhaps the source of the worse peiHerges is dependent on several calculation stepshdtur
formance of PM3. The same behaviour was found for NSUMmore, the networks are able to handle a large spectrum of
and HalSUM. ThePM3 net seems to be less sensitive toorganic compounds, making them compatible with large data
changes in the atomic chagy The chargdistribution within ~ base systems. The observed weakness in the prediction of
a molecule depends strongly on the molecule’s conformabulky molecules seems to be a computational problem in the
tion. Consequently, PM3 reacts far less sensitively to conforderivation of the appropiate conformation from gas phase
mationally free molecules leading to a worse calculation ofoptimized geometries. Of course, techniques such as that
logP for bulky molecules (Scheme 1). On the other handpresented here can only work properly for compounds that
AM1 is well suited for molecules with less conformational exist in the same structural form in water and n-octanol and
freedom.AM1 calculated Electrostatic Potential-Derived may therefore fail for sugars and ionisable compounds. Fur-
Atomic Charges (VESPA) [37] agree better than PM3 withther investigations will improve the predictive power of this
ab initio calculated charges, which helps explain the bettempproach. On the other hand, our approach is accurate enough
performance of AM1 in logP calculations. to be included as a general application for use with the

semiempirical program VAMP 6.5 [39].

Summary and conclusion Acknowledgement$his work was supported by the Deutsche
Forschungsgemeinschaft and the Wellcome Foundation Ltd.,
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nigue for the prediction of logP values. The correlation coef-
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Figure 8c. Dependence of the AM1/PM3 predicted logP
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