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Introduction

It is now possible to derive accurate molecular properties
with semiempirical molecular orbital theory. Especially elec-
trostatic properties such as dipole moments, polarizabilities
and electrostatic potentials are important and can often be
related to experimental behaviour [1]. On the other hand,
there is strong interest in the theoretical prediction of physi-
cally measurable properties for the development of new drugs.

In this respect the n-octanol/water partition coefficient is an
important parameter that is a measure of the extent to which
a solute is distributed between water and a water-immisicible
liquid phase. The n-octanol/water partition coefficient is the
ratio of a chemical’s concentration in n-octanol to that in
water in a two phase system at equilibrium. Since measured
values of the partition coefficient range from less than 10-4 to
larger than 108 (at least 12 orders of magnitude), the loga-
rithm, logP, is commonly used to characterise its value. LogP
is used extensively to describe a compound’s lipophilic or
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hydrophobic properties and is therefore a valuable param-
eter in many QSAR studies that have been developed for
pharmaceutical, environmental, biochemical and toxicologi-
cal sciences [2]. Many studies have shown that logP is useful
for correlating a drug molecule’s transport properties or its
interactions with receptor molecules, and changes in its struc-
ture with various biochemical or toxic effects [3]. Although
logP is generally easy to determine, the reliability of pre-
dicted values is important during the design process. Until
now, mostly empirical methods have been developed.

Among others [4], there are two widely used, essentially
empirical methods for the estimation of logP, Rekker’s f con-
stant method [5] and Leo and Hansch’s fragment approach
[6]. Rekker first defined an arbitrary set of terminal frag-
ments using a database of about 1000 compounds with known
logP. Linear regression analysis was performed with the num-
bers of the different substructures as the independent vari-
able and logP as the dependent variable. The regression co-
efficients obtained are used as group contributions. To esti-
mate the partition coefficient of a compound, one simply sums
up the group contributions and the appropriate correction
factors. Leo and Hansch’s philosophy was to determine logP

values of a set of small molecules very accurately and calcu-
late the fragmental values from these data. Using the con-
cept of isolating carbons (sp3 carbon atoms with at least two
bonds linked to other carbon atoms), they derived their own
set of terminal fragments. This system also includes many
correction factors (e. g. for multiple halogenation or differ-
ent double bonds). Although essentially all logP values for
the compounds included in the base set are well reproduced,
it is often a problem to divide (fragment) a molecule cor-
rectly, especially for complex drug molecules, or to use the
many correction factors. In order to overcome this situation,
new fragment methods (atomic fragments) were developed
[7] but even so, not all problems of these methods could be
solved.

Recently, methods have been proposed that utilise prop-
erties of the entire solute molecule, e. g. molecular surface
area, volume, charge density or electrostatic potential, to pre-
dict logP [8]. These methods attempt to overcome various
inefficiencies of the fragment constant approach, e. g. the
need for correction factors or the inability to estimate logP
for unknown fragments. For example, Herges et al. have used
a combination of semiempirical self-consistent reaction field
calculations (SCRF) and a neural network [9]. There have
also been attempts to calculate logP directly from the solva-
tion energies. For instance, Reynolds et al. [10] have used
free-energy perturbation calculations for a series of acyclic

Property Symbol Reference

total dipole moment Dt 17

mean polarizability POL 17

molecular surface SUR 17,18

molecular volume VOL 17,18

globularity GLOB 17,19

sum of the electrostatic potential (ESP) derived atomic charges

on the nitrogen atoms NSUM 17,20

on the oxygen atoms OSUM 17,20

Parameters introduced by Politzer et al.:

highest electrostatic potential ESPmax 17,21,22

lowest electrostatic potential ESPmin 18,21,22

number of surface points with positive ESP npos 17,23

number of surface points with negative ESP nneg 17,23

mean value of positive ESP MEAN+ 17,21,22

mean value of negative ESP MEAN– 18,21,22

positive variance σ2
+ 24

negative variance σ2
– 24

total variance σ2
tot 24

balance parameter  ν 24

histogram including the number of surface points within a

specified range of the ESP (8-point) h1-h8 17,21,22,23

Table 1. Calculated properties for the 194 compounds in the
data set.
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alcohols and find agreement with experimental logP values
of ±0.45 units. Cramer, Truhlar et al. [11] and Klamt [12]
have used differences in semiempirical calculated SCRF sol-
vation energies. In our approach to estimating logP, semiem-
pirical MO-methods are used to calculate a set of molecular
and atomic properties from gas phase geometries in order to
use them as descriptors for a back-propagation neural net-
work. Our approach is intended to estimate logP from a sin-
gle, fast gas phase calculation and should therefore be more
appropriate for rapid scans of large numbers of molecules. In
an initial test, 194 different organic compounds were used as
data set in order to test the reliability of the method. The
results obtained were then taken as starting point for the quan-
titative-structure property relationship (QSPR) on a data set
containing 1085 compounds. It includes a wide spectrum of
organic compounds, such as nitrogen-, oxygen-, sulfur- and
phosphorus-containing molecules, alcohols, ethers, halogen-
ated compounds, amino acids and various aromatic or
heteroaromatic molecules.

Computational details

All organic compounds and their experimental logP values
were taken from a database of the Wellcome Research Labo-
ratories, Beckenham, Kent. The program CONCORD [13]
was used to convert the 2D- into 3D-structures. The geo-
metries were then checked and, if necessary, modified with
the help of the molecular modelling program package SYBYL
[14]. The structures were optimised using AM1[15] and PM3
[16] included in the semiempirical program VAMP 6.0 [17].
In the case of the small data set, only AM1 was used. Amino
acids were calculated in their zwitterionic forms. For the ini-
tial approach, a set of molecular properties was calculated
using a slightly modified VAMP version. In this version,
descriptors developed by Politzer et al. [24] are derived from
molecular electrostatic surfaces. In total the 27 MEP-derived
descriptors shown in Table 1 were generated for the small
data set.

The globularity (GLOB) [19] is often referred to as the
deviation from spherity. It is calculated as the ratio of the
surface area of a sphere of volume equal to the calculated
molecular volume and the surface area of the molecule. If
the molecule is perfectly spherical, the globularity is one.
The histogram consists of 8 values. These are the number of
surface points (generated with a modified „Marsili“ algo-
rithm [23]) having a ESP within a defined range. The ranges
were defined as follows:

h1 ESP more negative than 100 kcal mol-1

h2 ESP between -100 and -60 kcal mol-1

h3 ESP between -60 and -20 kcal mol-1

h4 ESP between -20 and 0 kcal mol-1

h5 ESP between 0 and 20 kcal mol-1

h6 ESP between 20 and 60 kcal mol-1

h7 ESP between 60 and 100 kcal mol-1

h8 ESP more positive than 100 kcal mol-1

This approach was used in order to obtain a more de-
tailed description of the calculated electrostatic potential at
the surface.

Another data set, also derived from the electrostatic po-
tential, includes the properties introduced by Politzer et al.
[24] in their work on the interactions of solute and solvent.
The positive (σ2

+ ) and negative (σ2
– ) variance are calculated

from the positive (V +(r i)) and negative (V –(r j)) values of
the electrostatic potential V(r) on the molecular surface and
their averages:
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In other words, σ2
+ describes the standard deviation over

the positive molecular electrostatic potential (MEP) regions
of the molecule’s surface whereas σ2

– describes the negative
counterpart.

The total variance was then calculated as the sum of σ2
+

and σ2
–.

σ σ σtot
2 2 2= ++ − (3)

The total variance, σ2
tot , is a measure of the spread of the

surface potential and is particularly sensitive to variations in
its magnitude, emphasising positive and negative extremes.
It has been interpreted to be indicative of a molecule’s ten-
dency for electrostatic interactions [24]. Finally, the so called
balance parameter ν is derived using equation (4):
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ν

σ σ
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2 2
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ν represents the manner in which σ22
tot affects interactive ten-

dencies more accurately. It attains its maximum value when
σ22

+ and σ22
– are equal. This means that the molecule interacts

to a similar extent (whether strongly or weakly) through both
its positive and negative regions. The descriptor set was ex-
tended for the large data set. The additional MEP-derived
parameters are listed in Table 2.

These additional parameters were used in order to obtain
a more detailed description of the charge distribution within
the molecules. Overall 36 descriptors were created for the
large data set.
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Results

The discussion of the results is divided into two sections.
The first describes the results obtained for the small data set
using multiple linear regression analyses [25] and a back-
propagation neural network [26]. The second part describes
similar results for the large data set.

Small data set

Multiple linear regression analyses

Generally, use of multiple linear regression analyses is a very
fast method in order to identify the calculated properties that
are important for the prediction of experimental quantities.
These properties should be useful as descriptors for a neural
net. All investigations were performed using the QSAR pro-
gram TSAR [27]. The best results were obtained for the in-
put parameters ESPmax, ESPmin, MEAN+, MEAN-, Dt, POL,
SUR, VOL, GLOB, NSUM, OSUM, npos, nneg, σ

2
+, σ2

–, σ
2
tot

and and their squares. The linear regression coefficients r, r2

and the t-values (ratio of the input parameter’s regression
coefficient and the mean error) were used to select the best
regression performance. The following significant 10 term
equation (5) results from the regression analysis:

logP = (0.011 ± 0.001) ESPmin + (0.036 ± 0.005) SUR –
(0.203 ± 0.023) Dt + (0.824 ± 0.209) NSUM + (0.193 ±
0.190) NSUM2 + (1.126 ± 0.219) OSUM + (0.120 ± 0.075)
OSUM2 – (2.6· 10-7 ± 6.4·10-8) n2

pos – (5.1·10-7 ± 1.6·10-7)
n2

neg – (0.001 ± 0.0006) σ2
– – (1.279 ± 0.506)

(5)

r = 0.936 r 2 = 0.876

The t-values of the coefficients are shown in Table 3 and
the regression plot is shown in Figure 1.

The linear regression coefficient r is 0.936, the square r2

0.876 and the cross validation rcv 0.872. The standard devia-
tion is 0.532.

Discussion

The predictive power of our approach is promising, although
the mathematical relationship of the different variables is quite
simple. The descriptors found in equation (5) were therefore
used as starting point for the back-propagation neural net-
work.

Property Symbol Reference

sum of the electrostatic potential (ESP) derived atomic charges

on the sulfur atoms SSUM 17,20

on the phosphorous atoms PSUM 17,20

on the fluorine atoms FSUM 17,20

on the chlorine atoms CLSUM 17,20

on the bromine atoms BrSUM 17,20

on the iodine atoms ISUM 17,20

sum of the electrostatic potential (ESP) derived atomic charges

of all halides HalSUM 17,20

histogram including the number of surface points within a

specified range of the ESP (12-point) h1-h12 17,21,22,23

Table 2. Additional properties calculated for the 1085
compounds in the large data set

Table 3. t-values of regression equation (5).

Input parameter Coefficient t-value

ESPmin 0.011 2.755

SUR 0.036 15.640

Dt 0.203 7.645

NSUM 0.824 6.441

NSUM2 0.193 2.340

OSUM 1.126 8.211

OSUM2 0.120 2.717

npos
2 2.6·10-7 4.779

nneg
2 5.1·10-7 6.583

σ2
– 1.279 2.460
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Neural network

We recently introduced a technique to estimate 13C chemical
shifts using a combination of semiempirical calculations and
a back-propagation network [28]. The concept of a super-
vised learning algorithm (implemented in back-propagation
networks) is well suited as a nonlinear device for linking
semiempirically calculated parameters with experimental
quantities. Generally, neural networks are able to perform
highly nonlinear pattern recognition, classification and re-
gression tasks, the results of which are often superior to tra-
ditional approaches. Recent applications of neural networks
include the determination of structure-activity relationships
in drug design (QSAR) [29-31], the prediction of protein struc-
ture [32] and the classification of spectra [33]. Thermody-
namic data such as solubilities [34] and boiling points of or-
ganic heterocycles [35] have also been the subject of investi-
gation. The network simulation program ANsim [36] was used
in this work.

Results of the back-propagation net

The small training set contained mainly aliphatic- and cyclic
hydrocarbons, aromatic- and heteroaromatic compounds con-
taining oxygen-, phosphorus- and nitrogen atoms. The number
of descriptors was varied within a range of 8 to 13 param-
eters. The parameters of equation (5) were taken as starting
point. Table 4 shows the best descriptor set, which was ob-
tained by trial-and-error variation of the descriptor set start-
ing with those that appear in equation (5). The correlation
obtained is illustrated in Figure 2.

The correlation coefficient r obtained is 0.962, the square
r 2 is 0.925 with a standard deviation of 0.393.The cross vali-

Figure 1. Best predictions of the logP values by multiple
linear regression analysis.

Figure 2. Best predictions obtained  for the logP training set
using a 12:4:1 neural net.

Table 4. Descriptor set for the 12:4:1 back-propagation
network.

Number Descriptor

1 total dipole moment Dt
2 mean polarizability POL

3 molecular surface SUR

4 molecular volume VOL

5 NSUM

6 OSUM

7 npos

8 nneg

9 MEAN+

10 MEAN–

11 σ2
tot

12 ν
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Figure 3. Best predictions obtained  for the small logP test
set using a 12:4:1 neural net.

Figure 4. Best predictions of the logP values by a multiple
linear regression analysis (579 compounds).

Table 5. t-values of regression equation (6).

Input parameter Coefficient t-value

POL 0.063 9.140

MEAN+ 0.058 5.243

h6 0.0009 7.142

ESPmin 0.031 9.192

GLOB 1.296 2.680

NSUM 0.437 11.660

OSUM 0.815 13.664

PSUM 0.704 3.810

SSUM 0.437 7.899

ClSUM 2.286 7.142

BrSUM 5.883 5.727

ISUM 1.874 2.969

dation rcv is 0.930. A small test set, consisting of 18 mol-
ecules, was selected in order to test the trained network. The
correlation obtained can be seen in Figure 3.

The correlation coefficient r is 0.986, r2 is 0.972 with a
standard deviation of 0.339. The rcv value is 0.958. The re-
sults of this initial investigations were thus very promising.
We therefore used a set of 1085 organic compounds in order
to refine our approach.

Large data set

Multiple linear regression analyses

With the experience of the initial approach, an enlarged data
set with 579 organic compounds was selected covering an
experimental logP range from -4 to 8. Parameters shown in
Tables 1 and 2 were used for the multiple linear regression
analysis. Again, the best results were obtained for the input
parameters ESPmax, ESPmin, D t, n pos, n neg, MEAN +, MEAN-,
POL, SUR, VOL, GLOB, σ2

+, σ2
–, σ2

tot , ν, NSUM, OSUM.
Surprisingly, no square values were found. Moreover, all pa-
rameters with halogen charges were included. The following
equation (6) results from the best linear regression:

logP = 0.063 POL – 0.058 MEAN+ + 0.0009 h6 + 0.031
ESPmin – 1.296 GLOB + 0.437 NSUM + 0.815 OSUM +
0.704 PSUM + 0.437 SSUM + 2.286 ClSUM + 5.883
BrSUM – 1.874 ISUM + 3.713

(6)

r = 0.866 r 2 = 0.750

The t-values are shown in Table 5. Figure 4 shows the
regression results graphically.
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The correlation coefficient r is 0.866, r2 is 0.750 with a
standard deviation of 0.799.The rcv value is 0.806. Again the
linear regression is fairly accurate. In order to analyse the
descriptor set in more detail, a principal component analysis
was carried out.

Analysis of the principal components

A principal components analysis was performed within TSAR
[27] in order to assess the major contributors to the total vari-
ance of the descriptor set. Overall, 16 parameters were used
and 12 principal components were obtained that accounted
for 100 % of the total variance. It is sufficient to concentrate
on the three most important principal components, which
contribute 28 %, 22 % and 10 % to the total variance, respec-
tively. The parameters and components are shown in Table 6.

Principal component 1 has the largest influence on the
regression’s variance. The properties with the largest contri-
butions have the largest impact on the prediction of the logP
value. These are Dt, MEAN+, MEAN–, σ2

tot, ν, ESPmin,
ESPmax,OSUM and SSUM. The second component adds POL,
VOL, SUR, GLOB and NSUM. In the third component no
further properties appear. The properties PSUM and
HALSUM do not play any role in the first three principal
components, but are clearly important for specific compounds.
The correlation matrix as a supplemental tool was analysed
in order to detect correlations between the different param-

eters. A direct correlation of the parameters VOL and SUR
could be observed, suggesting that one parameter is suffi-
cient for the back-propagation net.

Back-propagation networks

A training set of 980 organic compounds was selected ran-
domly from the total set of 1085. 105 compounds were cho-
sen for the test set. The number of descriptors for the input
layer was varied between 16 and 25 and the number of nodes
of the three layer back-propagation network between 300 and
500. The networks were trained until the RMS error fall be-
low 4% of the logP range. The danger of overtraining the
neural net was checked with the standard deviation of the
test set. The best performance was obtained with an input
layer of 16 parameters and a total net connectivity of 451
nodes (16-25-1 net). Two networks were trained for AM1
and PM3 data sets, respectively. The final descriptor set is
shown in Table 7.

Although the descriptors SUR and VOL are highly corre-
lated, it is surprising that the networks’ performances de-
pend on both parameters. The results obtained for the final
network are illustrated in Figure 5.

The correlation coefficient r for the training set is 0.965,
r2 is 0.931 with a standard deviation of 0.41. The rcv value is
0.930. In the case of PM3 the performance is slightly worse
(r = 0.940, r2 = 0.883, rcv = 0.905 and the standard deviation

Table 6. Principal components analysis.

Variable property pc 1 pc 2 pc 3

x1 Dt 0.353

x2 POL 0.504

x3 MEAN+ 0.397 -0.175 0.151

x4 MEAN- -0.389 0.104 0.160

x5 σ2
tot 0.403 -0.244

x6 ν 0.186 -0.119 0.490

x7 ESPmin -0.239 -0.149 0.548

x8 ESPmax 0.422 0.170

x9 VOL 0.506 0.106

x10 SUR 0.519 0.115

x11 GLOB -0.251

x12 NSUM -0.207 0.355

x13 OSUM -0.244 -0.174 -0.369

x14 PSUM

x15 SSUM 0.233 0.132

x16 HALSUM

pc = principal component

Table 7. Descriptor set for the neural networks.

Number Descriptor

1 total dipole moment Dt
2 mean polarizability POL

3 molecular surface SUR

4 molecular volume VOL

5 globularity GLOB

6 NSUM

7 OSUM

8 PSUM

9 SSUM

10 HalSUM

11 ESPmax

12 ESPmin

13 MEAN+

14 MEAN–

15 σ2
tot

16 ν
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is 0.45). A test set containing 105 organic molecules was
used in order to investigate the predictive power of the net-
work. The result is shown in Figure 6.

A correlation coefficient r of 0.950, r2 of 0.902, the cross
validation rcv of 0.915 with a standard deviation of 0.53 was
obtained (maximum error 1.19). For the range of organic
molecules within this data set, the predictions are very accu-
rate. In the case of PM3, the performance of the network is
slightly worse. The result is shown in Figure 7.

A correlation coefficient r of 0.910, r 2 of 0.830, the cross
validation rcv of 0.837 with a standard deviation of 0.67 (maxi-
mum error: 2.15) was obtained. Although the training per-
formance is rather similar for the two semiempirical meth-
ods, it is surprising that there are such large deviations in the
prediction for certain molecules in the case of PM3. In order
to compare the efficiency of the two networks, all predicted
logP values of the test set are given in Table 8.

While the performance of AM1 is quite accurate, there
are some large deviations in the case of PM3. During a fur-
ther investigation of test molecules not included in the origi-
nal test set, a systematic weakness of our present networks
was detected. LogP for compounds with large alkyl chains is
estimated poorly. Some examples with a large calculated er-
ror are given in Scheme 1.

Figure 5. AM1 training set. Figure 6. AM1 test set.

Figure 7. PM3 test set.
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Compound exp. AM1 PM3

1: N,N-Bis(2,3-dihydroxypropyl)-3-N-methyl-acetamido-

2,4,6-triiodo-m-phthalamide -2.06 -1.82 -2.13

2: Citric acid -1.72 -2.00 -1.12

3: Phenylalanine -1.52 -1.42 -1.29

4: 1,3-Propanediol -1.04 -0.43 -0.30

5: Maleic acid-hydrazide -0.84 -1.34 -1.09

6: N-Formyl-cyclobutane-carboxamide -0.70 -0.10  0.00

7: Nitrofurantoin -0.47 -1.20 -0.83

8: 2,2-Dimethylpropionic acid-hydrazide -0.35 -0.53  0.01

9: 3-Fluoropropanol -0.28 -0.10  0.05

10: 2',3'-Didesoxyadenosine -0.22  0.24  0.80

11: 3-Mesylphenyl-urea -0.12  0.16 -0.31

12: o-Methyl-THPO -0.04  0.42  0.43

13: 5,6-Dihydro-2-methyl-1,4-oxathiin-3-carboxylic acid  0.04  0.86  0.71

14: Mercapto-acetic acid  0.09 -0.68 -0.67

15: Merbarone  0.14  0.72  1.26

16: o-Methylbenzoyl-hydrazine  0.22  0.65  0.65

17: Nikethamide  0.33  0.98  0.90

18: 2,2-Dichloroethanol  0.37  0.73  0.92

19: 1-Acetyl-N-(4-fluorophenyl)-hydrazine-carboxamide  0.42  1.19  1.31

20: Piperazine-2-carboxanilide  0.48  1.07  1.55

21: 2-Nitro-p-phenylenediamine  0.53 -0.46  0.62

22: 2-Amino-5-methoxy-benzimidazole  0.57  0.95  1.52

23: Glutaric acid-dimethylester  0.62  0.53  0.91

24: 3-(5-Nitro-2-furanyl)-2-propenoicamide  0.65 -0.08  1.59

25: 1-Acethyl-6-dimethyl-7-methoxymitosene  0.72  0.37  0.07

26: 2-Azacycloheptanthione  0.75  0.85  0.75

27: N-(2-Benzoyl-oxyacetyl)-2-carboxyazetidine  0.79  0.58  1.08

28: Chloropentazide  0.84  1.08  0.88

29: 4-Pyridine-butaneamine  0.86  0.87  1.22

30: 2-Iodo-benzamide  0.93  1.51  1.33

31: 4-Methylthiazole  0.97  0.55  0.90

32: 6-Cyanoquinoxaline  1.01  1.38  0.47

33: 1-Phenyl-3-cyanoguanidine  1.05  1.37  2.50

34: m-Acetylamino-acetophenone  1.10  1.21  1.02

35: Acetylsalicylic acid  1.19  2.14  1.50

36: 2-Nitrobenzyl-alcohol  1.24  2.43  2.47

37: Benzaldehyde-semicarbazone  1.27  0.65  0.97

38: 4-Oxo-4-phenyl-butanoic acid  1.30  1.64  1.73

39: 2-Phenyl-ethanol  1.36  2.25  1.95

Table 8. Table of test molecules with calculated AM1/PM3
logP values.
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40: 3-Bromo-benzenesulfonamide  1.39  1.04  0.74

41: Bromochloromethane  1.41  1.05  1.33

42: 2-Imino-3-methyl-5-(5-nitro-2-furfurilidine)-thiazoline-4-one  1.44  0.62  1.16

43: Trimethylacetic acid  1.47  0.54  0.69

44: o-Fluorophenylacetic acid  1.50  0.78  0.49

45: 2-(2,6-Dichloro-4-hydroxy-phenylimino)-imidazolidine  1.52  1.06  1.44

46: N-Phenyl-4-aminophenylsufonamide  1.55  1.32  2.63

47: N,N-Dimethylcarbamate-p-(n,n-dimethylcarbamate)-benzylester  1.59  2.34  1.90

48: 2-Methylquinoxaline  1.61  1.28  1.65

49: 3,5-Dimethoxyphenol  1.64  1.32  1.44

50: Indole-3-ethanolcarbamate  1.69  1.67  2.34

51: 3-Indolylpropionic acid  1.75  2.03  2.34

52: Propylene  1.77  1.72  1.80

53: 2-Oxoisopropyl-5-phenyl-5'-ethylbarbituric acid  1.79  1.08  1.55

54: 4-Dimethylamino-thieno(2,3-D)-pyrimidine  1.82  1.68  1.00

55: 2-Acetyl-oxyethyl-benzoic acid-ester  1.85  2.87  2.45

56: 2-nitro-5-fluorophenol  1.91  0.90  0.51

57: N-Methyl-2,3-dimethylphenyl-carbamate  1.95  1.98  1.76

58: o-Methylphenoxy-acetic acid  1.98  1.59  1.77

59: Acetic acid-m-methoxybenzylester  2.02  2.04  2.09

60: 1,1'-Dioxo-3-cyclohexen-3-yl-1,2,4-benzothiadiazine  2.05  1.64  2.14

61: 3,4-Dimethylacetanilide  2.10  1.98  1.71

62: Indole  2.14  1.78  2.37

63: 1,2-Dinitro-4-chlorobenzene  2.18  3.15  3.00

64: 1-Hydroxyethyl-2-styryl-5-nitroimidazole  2.25  2.59  1.82

65: o-Methyl-benzaldehyde  2.26  1.84  1.57

66: 2,6-Dimethoxypyridine  2.30  1.68  1.33

67: Thiophene-2-carboxylic acid-ethylester  2.33  1.95  1.52

68: 21-Desoxybetamethasone  2.35  1.82  2.13

69: Thiosalicylic acid  2.39  1.79  1.36

70: 1-Pyrrol-2-yl-pentanone  2.42  3.03  3.21

71: 5,5'-Diphenyl-hydantoin  2.47  2.66  2.45

72: 8-Trifluoromethyl-quinoline  2.50  1.58  0.34

73: 2,17-dihydroxy-3-oxolactone-7,21-dicarboxy-pregan-4-ene  2.54  2.81  2.50

74: N-Benzyl-N-formylaniline  2.62  3.11  3.29

75: 2-Ethyl-4,6-dinitrophenol  2.67  2.88  1.54

76: 5,6-Diazaphenanthrene  2.71  2.92  2.41

77: 1-Methyl-1,3-dihydro-5-(2-fluorophenyl)-7-chloro-1,4-

benzodiazepin-2-one  2.75  1.92  1.83

78: 3-Butyl-RS-1(3H)-isobenzofuranone  2.80  2.23  2.38

79: 2-Anilino-1,4-Naphthoquinone  2.84  3.02  2.78

80: 4-Aminobiphenyl  2.86  2.99  3.97

81: Dihydromorphanthridine  2.90  3.21  3.42

82: p-Phenoxy-aniline  2.93  2.64  3.74

83: Octanoic acid  3.05  1.99  1.92
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84: Deoxycorticosterone-acetate  3.08  2.67  3.51

85: 3,4-Dichloronitrobenzene  3.12  2.51  2.98

86: N-(3,4-Dichlorophenyl)-difluoroacetamide  3.18  3.46  3.39

87: Iodobenzene  3.25  2.81  2.79

88: 1-(3,4-Dichlorophenyl)-2-isopropylaminoethanol  3.32  2.65  3.23

89: 3-Methoxy-4-cyclohexyl-methoxy-phenylacetic acid  3.35  4.34  3.79

90: Anthraquinone  3.39  3.43  3.28

91: Prometrin  3.51  3.43  2.33

92: 4,7-Dichloroquinoline  3.57  3.73  3.05

93: 9-(N-((N,N’-Diethylamino)acetyl)amino)-fluorene  3.64  3.57  3.45

94: Indigo  3.72  4.56  3.00

95: 3,4-Dimethylchlorobenzene  3.82  3.69  3.64

96: 1-(4-Cyclohexylphenyl)-3-methoxy-3-methylurea  4.08  3.76  3.30

97: Propanoic acid-(1-phenyl-1-benzyl-2-methyl-3-(n,n-dimethylamino))-

propylester  4.18  3.90  4.13

98: 2,6-Dimethylnaphthalene  4.31  4.24  4.27

99: 1,3-Dimethylnaphthalene  4.42  4.27  4.17

100: Propanoic acid-1,3-dithiolan-2-ylidine-dibutylester  4.60  4.26  2.65

101: 2,4,4'-Trichlorobiphenyl  5.62  6.09  5.97

102: 2,4,5-Trichlorobiphenyl  5.90  5.81  5.74

103: 1,3,7,8-Tetrachlorodibenzodioxin  6.30  6.24  6.03

104: 1,2,3,6,7-Pentachlorodibenzodioxin  6.74  5.86  5.86

105: 3,3',4,4',5,5'-Hexachlorobiphenyl  7.41  6.38  6.93

Dependence of the network’s predictive power on the
descriptors

The dependence of the predicted AM1 and PM3 logP values
was investigated by systematically changing the input
descriptors. A compound with a small error (acetophenone)
was selected for that purpose. With the exception of the pa-
rameters polarizability POL, balance ν and charge OSUM
(Table 2), only small effects on the predicted logP value re-
sulting from the change of the AM1/PM3 calculated input
parameters were found. Changing the calculated value of the
parameters ν and POL has a dominant influence on the pre-
diction of logP. Figure 8a shows the dependence of the cal-
culated logP on the descriptor polarizability, POL.

A linear relationship between the logP values and the
change of the parameter is evident, with a larger slope for
AM1. The effects for the parameter “Balance” are illustrated
in Figure 8b.

In this case the network’s reaction is nonlinear. Small
changes of the calculated value (AM1 and PM3) of the bal-
ance cause a positive change in the predicted logP. It is inter-
esting to note that the original value of ν represents the mini-
mum of the curve.

Another sensitive parameter for the evaluation of logP is
the descriptor OSUM. The result is illustrated in Figure 8c.Scheme 1. Molecules with large errors.
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While the predicted logP value is nearly constant when
the PM3 charge is varied, the effect on the AM1 predicted
logP is enormous. Increasing the charge strongly increases
the predicted logP, whereas in the reverse direction a limit-
ing value of 1.70 is approached.

The different behaviour of the AM1 and PM3 nets for the
descriptor OSUM is perhaps the source of the worse per-
formance of PM3. The same behaviour was found for NSUM
and HalSUM. The PM3 net seems to be less sensitive to
changes in the atomic charges. The charge distribution within
a molecule depends strongly on the molecule’s conforma-
tion. Consequently, PM3 reacts far less sensitively to confor-
mationally free molecules leading to a worse calculation of
logP for bulky molecules (Scheme 1). On the other hand,
AM1 is well suited for molecules with less conformational
freedom. AM1 calculated Electrostatic Potential-Derived
Atomic Charges (VESPA) [37] agree better than PM3 with
ab initio calculated charges, which helps explain the better
performance of AM1 in logP calculations.

Summary and conclusion

Using semiempirically calculated molecular and atomic prop-
erties and a back-propagation network is a promising tech-
nique for the prediction of logP values. The correlation coef-

Figure 8b. Dependence of the AM1/PM3 predicted logP
values of molecule acetophenone on the balance. The “change
of parameter” axis indicates that the numerical value of the
parameter was changed by the given amount.

Figure 8a. Dependence of the AM1/PM3 predicted logP value
of acetophenone on the polarizability. The “change of
parameter” axis indicates that the numerical value of the
parameter was changed by the given amount.

ficients and standard deviations obtained are nearly as good
as those obtained using ClogP [38] without having problems
with unknown fragments and without using any correction
factors.The current method is more general than that of Herges
et al. [9], because the descriptors are calculated within one
gas phase geometry optimisation, whereas the technique of
Herges is dependent on several calculation steps. Further-
more, the networks are able to handle a large spectrum of
organic compounds, making them compatible with large data
base systems. The observed weakness in the prediction of
bulky molecules seems to be a computational problem in the
derivation of the appropiate conformation from gas phase
optimized geometries. Of course, techniques such as that
presented here can only work properly for compounds that
exist in the same structural form in water and n-octanol and
may therefore fail for sugars and ionisable compounds. Fur-
ther investigations will improve the predictive power of this
approach. On the other hand, our approach is accurate enough
to be included as a general application for use with the
semiempirical program VAMP 6.5 [39].
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